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A Robust Approach for the Derivation
of Closed-Form Green’s Functions

M. 1. Aksun, Member, IEEE

Abstract— Spatial-domain Green’s functions for multilayer,
planar geometries are cast into closed forms with two-level ap-
proximation of the spectral-domain representation of the Green’s
functions. This approach is very robust and much faster com-
pared to the original one-level approximation. Moreover, it does
not require the investigation of the spectral-domain behavior of
the Green’s functions in advance to decide on the parameters
of the approximation technique, and it can be applied to any
component of the dyadic Green’s function with the same ease.

I. INTRODUCTION

UMERICAL modeling of printed structures used in

monolithic millimeter and microwave integrated circuits
(MMIC) can be efficiently and rigorously performed by em-
ploying the method of moments (MoM). The MoM is based
upon the transformation of an operator equation, such as
integral, differential, or integro-differential operators, into a
matrix equation [1]. Although the MoM is the most effi-
cient numerical technique for moderate-size printed geometries
(spanning several wavelengths in two dimensions), there is
still need for improvement, which could be accomplished in
the calculation of the matrix elements and in the solution of
the matrix equation. For small geometries like those requiring
couple hundreds of unknowns, the matrix-fill time could be
the significant part of the overall solution time, however, for
large geometries the matrix solution time will dominate the
CPU time [2].

In the application of the spatial-domain MoM to the solution
of a mixed-potential integral equation (MPIE), one needs
to calculate the Green’s functions of the vector and scalar
potentials in the spatial domain where they are represented as
oscillatory integrals, called Sommerfeld integrals. The eval-
uation of these integrals is quite time consuming, therefore
the matrix-fill time would be significantly improved if these
integrals can be evaluated efficiently. Recently, a technique
has been proposed to approximate these integrals analytically
for a horizontal electric dipole over a thick substrate backed
by a ground plane; this is called the closed-form Green’s
functions method [3]. This technique was improved first for
two layer geometries with arbitrary thicknesses [4], then for
multilayer geometries with horizontal electric dipole (HED),
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horizontal magnetic dipole (HMD), vertical electric dipole
(VED), and vertical magnetic dipole (VMD) sources [3].
However, a question remains to be answered on the robustness
and the efficiency of the technique, because some of the
Green’s functions are usually difficult to approximate and it
is recommended that the function to be approximated needs
to be examined in advance. The source of difficulties in
this technique is the approximation of the spectral-domain
Green’s functions in terms of complex exponentials. The
originally proposed technique [3] uses the original Prony
method which requites the same number of samples as the
number of unknowns, that is, the number of samples must
be twice as many as the number of complex exponentials
(one for the coefficient and one for the exponent). Therefore,
it would be difficult to account for the fast changes in the
spectral domain without using tens of complex exponentials
if not hundreds in certain cases, which is partly due to the
uniform sampling required by the Prony method. The use of
the least-square Prony method has improved the technique
to account for the fast changes with a reasonable number
of exponentials [4], but due to the noise sensitivity of the
Prony methods [6], [7], it requires several trial and error
iterations which render the technique to be inefficient and
not robust. As a solution, another approximation technique,
called the generalized pencil of function (GPOF) method [8],
is employed in casting the Green’s functions into closed
forms [5]. The GPOF method has turned out to be quite
robust and less noise sensitive when compared to the original
and least-square Prony’s methods, and also provides a good
measure for choosing the number of exponentials used in
the approximation. However, it still requires one to study in
advance the spectral-domain behavior of the Green’s function
in order to decide on the approximation parameters like
the number of sampling points and the maximum value of
the sampling range. In addition, since the approximation
techniques, like the Prony and the GPOF methods, require
the function to be sampled uniformly, one would need to
take hundreds of samples in order to be able to approxi-
mate a slow converging function with rapid changes (even
if this were to occur in a small region), which is a typ-
ical behavior of the spectral-domain Green’s functions of
the scalar potentials in a thin substrate. Because of these
difficulties, the technique of deriving the closed-form Green’s
functions and subsequently using them in MoM applications
are considered to be not robust and could not be used much
for the development of a general-purpose electromagnetic
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software. In this paper, a new approach based on a two-
level approximation is proposed to overcome these difficulties,
and demonstrated that it is very robust and computationally
efficient.

The procedure of the original one-level approximation is
described and difficulties associated with this approach are
demonstrated on some examples by using the GPOF method in
Section II of this paper. This is followed in Section III where
the formulation of the new approach based on a two-level
approximation and some numerical examples are included.
Then, in Section IV, a discussion on the new technique and
conclusions are provided.

II. DIFFICULTIES IN THE ORIGINAL
ONE-LEVEL APPROXIMATION

Since the main goal of this paper is to introduce a robust
technique to obtain the spatial-domain Green’s functions in
closed forms for planarly-layered media, Fig. 1, it would be
useful to give the definition of the spatial-domain Green’s
functions

1
AT Jsrp

G dk, k, H® (k,p)G(k,) )

where, G and G are the Green’s functions in the spatial and
spectral domains, respectively, H(E2) is the Hankel function of
the second kind and SIP is the Sommerfeld integration path
defined in Fig. 2. Note that this integral, called the Sommerfeld
integral, can not be evaluated analytically for the spectral-
domain Green’s functions é, which are obtained analytically
for planarly stratified media [5], [9]. It was recognized by
Chow et al. [3] that if the spectral-domain Green’s function
G is approximated by exponentials, the Sommerfeld inte-
gral (1) can be evaluated analytically using the well-known
Sommerfeld identity
—jkr : — k.2
e g dkpka§2)(kpp)e k2|
r 2 Js1p 2

@)

Therefore, this places the emphasis of deriving the closed-
form Green’s functions on the exponential approximation.
Since the approximation techniques used for this problem,
namely the original Prony, the least square Prony and the
GPOF methods, require uniform samples along a real variable
of a complex-valued function, one might think of choosing
the integration path in (1) along the real &, axis so that G can
be sampled along a real variable. However, one should notice
that k2 = k> — k2 and sampling along real k, results in an
approximation in terms of exponentials of k, which cannot
be cast into a form of exponentials of k, as required in the
application of the Sommerfeld identity (2). Hence, a deformed
path on %, plane, denoted by C,, in Fig. 2, was defined as a
mapping of a real variable ¢ onto the complex k, plane by

kz:k{—jwr(l—%—)], 0<t<T, (3
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Fig. 1. A typical planar geometry.

where k. and £ are defined in the source layer [3]. The Green’s
functions are sampled uniformly on ¢ € [0,7,], which maps
onto the path C,, with k,_, = k[1+ T2]"/2 in the k,-plane,
and approximated in terms of exponentials of ¢ which can
easily be transformed into a form of exponentials of k.. This
scheme is called the one-level approximation approach here in
this paper because the complex function to be approximated is
sampled between zero and 7, and is assumed to be negligible
beyond T,.

For a general-purpose algorithm, the spectral-domain
Green’s functions are obtained for a multilayer medium and
neither surface-wave poles nor the real images are extracted.
It is true that the extraction of the surface-wave poles (SWP)
and the real images would have helped the exponential
approximation techniques by making the Green’s functions in
the spectral domain well-behaving (extraction of the SWP’s)
and fast-converging (extraction of the real images). However,
since the contribution of the SWP’s is small for geometries
on a thin substrate, and there is no analytical way of finding
the real images for multilayer planar structures except for
simple cases like single and double layers, the help gained
for the approximation would be limited to a restricted class of
planar geometries and would render the algorithm not general
purpose and not robust.

It would be instructive to consider the practical details of
the implementation of the exponential approximation along
the path defined in (3). It is of utmost importance to choose
the approximation parameters; T;,, the number of exponen-
tials to be used in the approximation, and the number of
samples in ¢ € [0,T5], judiciously for the success of this
approach. To illustrate the implementation of the one-level
exponential approximation and the difficulties involved, the
spectral-domain Green’s function for the scalar potential due
to an z-directed dipole, ég, is given in Fig. 3, for a geometry
of four layers at 30 GHz: First layer-PEC; second layer-
€ro = 12.5,dy = 0.03 cm; third layer-c,.3 = 2.1,d3 = 0.07 cm;
fourth layer-free-space, and the source and observation planes
are chosen at the interface of the second and third layers. Since
the expressions of the spectral-domain Green's functions in a
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Fig. 2. Definition of the Sommerfeld integration path and the path Cyp used in one-level approximation.
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Fig. 3. The magnitude of the spectral-domain Green’s function G2 along
the path Cy,,. First layer-PEC; second layer-e.9 = 12.5,d2 = 0.03 cmy; third
layer-e,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz.
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multilayer medium are given in [5] for HED, VED, HMD,
and VMD sources, they are not included in this paper. It is
evident from Fig. 3 that Green’s functions can have sharp
peaks and fast changes for small ¢, which maps to the far-
field region in the spatial domain. Therefore, one needs to
sample the Green’s function given in Fig. 3 at a period of
less than 0.05 along ¢ so that the fine features of the function
can be captured in the approximation. The choice of T is
another parameter that competes with the period of samples
because large T, corresponds to large number of samples
and translates to a longer CPU time. Fortunately, for the
example given in Fig. 3, the Green’s function decays quite
fast in the spectral domain, therefore it would be enough to
sample as far as T, = 5 which requires 200 samples if At
is chosen to be 0.025. The spatial-domain Green’s function is
obtained via the GPOF method using the above approximation
parameters (T, = 5, number of samples = 201, number of
exponentials = 13) and compared to the result obtained from
the numerical integration, which are labeled as “Apprx.” and
“Exact,” respectively, in Fig. 4. Although, as it was mentioned
above, the SWP’s are not extracted from the spectral-domain
Green’s function prior to the exponential approximation, the
contribution of the SWP’s is also shown for the purpose of
comparison and one can draw a conclusion that the exponential
approximation algorithm (GPOF) works fine well within the
influence range of the SWP’s and beyond that an asymptotic

13.0

12.0

11.0

~3.0 -2.0

log,o(kop)

Fig. 4. The magnitude of the Green’s function for the scalar po-
tential and the surface wave contribution. First layer-PEC; second
layer-e,2 = 12.5,ds = 0.03 cm; third layer-e,.3 = 2.1,dg = 0.07 cm;
fourth layer-free-space, freq = 30 GHz.
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approximation together with the surface-wave contribution can
be used to approximate the spatial-domain Green’s functions
{101, [11].

Unfortunately, not all the Green’s functions have fast de-
caying spectral-domain behavior like the above example given
in Fig. 3. For example, the spectral-domain Green’s function
for the vertical component of the vector potential due to
a HED [5], G4,/jk. = G4 /jky, does not decay as fast
and moreover has a relatively sharp peak which requires
sampling almost as frequently as that of the example given
in Fig. 3, as shown in Fig. 5. To demonstrate the effect of the
approximation parameters, the Green’s function [ G2, dz (=
F-1{GA /jk,}) is given for the same approximation pa-
rameters as those of the above example (7, = 5, number
of samples = 201) and compared to the results obtained by
the numerical integration of the spectral-domain representation
of the Green’s function and to the results obtained by using
different approximation parameters in Fig. 6. It is observed
that the approximated Green’s functions do not agree with
the exact solution for small values of p because the spectral-
domain Green’s function is not sampled far enough to get
an accurate near-field distribution. However, if the value of
T, is increased, the agreement between the approximated and



654 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 5, MAY 1996

—*A .
0.1
— Real
o1 +\ Imaginary|

0.0

,i/
-0.1 4}’ _

!

i
-0.1 .

0.0 5.0 10.0 15.0 20.0
t

Fig. 5. The magnitude of the spectral-domain Green’s function é;“z [ikz.
First layer-PEC; second layer-e2 = 125,d2 = 0.03 cm; third
layer-e,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz.

exact Green’s functions is improved at the expense of the
computation time provided that the frequency of sampling is
kept constant.

From the above discussion, it can easily be concluded that
the one-level approximation approach can not be made fully
robust and suitable for the development of CAD software.
As it was mentioned above, this is because it requires users
first to investigate the spectral-domain behavior of the Green’s
function and then to perform a few iterations to find the
best possible combination of the approximation parameters.
To circumvent these difficulties, a two-level approximation
scheme is developed here in conjunction with the use of the
GPOF method and its details are given in the following section.

III. TWO-LEVEL APPROACH FOR APPROXIMATING
THE SPECTRAL-DOMAIN GREEN’S FUNCTIONS

To alleviate the necessity of investigating the spectral-
domain Green’s functions in advance and the difficulties
caused by the trade-off between the sampling range T, and the
sampling period, the approximation is performed in two levels.
The first part of the approximation is performed along the path
Cap1 while the second part is done along the path Cqy2, as
shown in Fig. 7. Note that the second part of the approximation
is the same as the one-level approximation scheme described
in the previous section, except that now the value of Ty
(kppors = k[1 4+ T%]/?) can be set in advance to a value
such that k,___, > km where ky, is the maximum value of
the wavenumber. involved in the geometry.

To illustrate the procedure of the two-level approximation,
we will first outline the necessary steps and then provide some
of the details. The steps. are:

1) Choose T,2 such that k,_ .., > kn : For exam-
ple, since GaAs is the highest dielectric constant layer
(e-(GaAs) = 12.5), then ky, = V12.5k,, and Tz can
be safely chosen to be five.

logol f G?x dz|

_8-0 T T

Exact

............. Apprx.( TO=5, # of sample=201)
£ AppPIrx.{T0=10, # of sample=401)

e APPIrX(T0=50, # of sample=601)

-2.0 -1.0 0.0

logm(kop)

Fig. 6. The magnitude of the Green’s function for the vector potential
J G2, dx. First layer-PEC; second layer-e,2 = 12.5,d2 = 0.03 cm; third

layer-€,3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz.

-3.0

2) Choose Toy, i€, kppngy = F[1 + (To1 + To2)?]Y/2, and
the number of samples on [k, Kpma. |0 The choice
of Ty is not very critical as long as one chooses k, .
large enough to pick up the behavior of the spectral-
domain Green’s function for large k,, and, since the
spectral-domain behaviors of the Green’s functions are
always smooth beyond k,__ ., it is not necessary to have
a large number of samples on [k, ., kp...,]- Typical
values could be 200 for T,; and 200 for the number of
samples.

3) Sample the function along the path C,,; and approxi-
mate it by using the GPOF method: Sampling along the
path Cqp1 can be performed by varying ¢ between zero
and T,; uniformly in k, = —jk[To2 + t].

4) Subtract the function approximated for the range of
kp € [Kpmaxas Kpmexs) from the original function: The
remaining function will be nonzero over a small range
of k, (€ [0,kp,...]) so that one can pick up the
fine features of this function without employing a huge
number of sampling points.

5) Sample the remaining function uniformly along the path
C,p2 and approximate it by using the GPOF method:
Sampling along the path C,p» can be performed by
varying t between zero and Too uniformly in k, =
k[-jt + (1 — t/Te2)].

The parameters that must be fixed by the user in advance
are the limits of the sampling ranges T, and Ty for the first
and the second parts of the approximation, respectively, and
the number of samples along the paths C,p1 and Cypo, which
respectively correspond to the first and second parts of the
approximation. Although the number of parameters which are



AKSUN: A ROBUST APPROACH FOR THE DERIVATION OF CLOSED-FORM GREEN’S FUNCTIONS 655

Im[ k5]

kp - plane

Fig. 7. The paths Cqp1 and Cgp2 used in two-level approximation.

to be decided by the user seems to have increased compared to
the one-level approximation, these parameters are determined
only once for the class of geometries that are of interest; they
are used for the approximation of any component of the dyadic
Green’s function and for any geometrical constants. Moreover,
the choice of these parameters do not require an investigation
of the function to be approximated in advance because they can
be chosen for the possible limits of the geometrical constants.

To demonstrate the robustness of the technique, the choice
of the parameters and the application of the above procedure,
the Green’s function / G2, dz is obtained for the same ge-
ometry given in Section II. Its spectral-domain representation
is given here as

C~;’;4.1!: —Hi kzw j z
ﬁﬁ_ - 25k [ k2 (A(kzw M) kzN)"_B(kzo? T kzw))e]kzz
it 22 I
kzz ] z
+ 7{;—2—(0(]‘:20, Ty kZN) + D(kzoa e 7kZN))e Ik,
P

@

to help explain the approximation procedure, where the layer
“§” denotes the source layer, and A, B,C, and D are given
in [5]. It should also be noted that this expression is for
the case where the source and observation points are in the
same layer, i.e., layer “2.” If it is desired to find the Green’s
function for the observatlon layer different from the source
layer, then the coefficients of the up-going waves and down-
going waves must be carried to the observation layer with a
recursive algorithm [5], [9]. Let us first give the parametric
equations describing the paths Cyp1 and Cypo for the first and
second parts of the approximation, respectively

For Capl k/'zz = _]kz [To2 + t] 0<t< Tol (5)
t
For Oapz ]ﬂzi=ki[—jt+(1—T ):| OStSToz
02
(6)

where ¢ is the running variable sampled uniformly on the
corresponding range. Then, the above procedure is followed
step-by-step as:
1) Too = 5 is chosen, for which &
TZ1Y? > by = V125 k.
2) Toy = 400 is chosen to ensure that the behavior of
G4, /jk, for large k, is captured. This choice is not

= ki[l +

Pmax2

3)

4)

critical, 300 or 500 could have been chosen instead.
Since there is no fine feature to pick up in this range,
that is, the function is smooth, one can keep the range
large without having to use a large number of samples.
Therefore, the number of samples is chosen to be 50.
G2 /jk, is sampled along the path C,p; and the GPOF
method is applied

éA
f(kp) = I:w fOr k € [kl’maxz’ pmaxl]

j
1
— Z by eBint — E agne ke 0
n=1
on = 00y, = eIt ®
gki

where b1, and By, are coefficients and exponents ob-
tained from the GPOF method, and Ny is the number
of exponentials used in this approximation. The choice
of the number of exponentials is based upon the number
of significant singular values obtained in an intermedi-
ate step of the application of the GPOF method. For
this specific problem, five exponentials are chosen to
approximate the Green’s function on the range of k, €
(% pmaxs s Kpmax: |- The transformation of the coefficients
by, and the exponents (31, is necessary to cast the
approximating function into a form suitable for the
application of the Sommerfeld identity (2), that is, the
approximating function must be an exponential function
of k.,. Hence, a1, and o, are obtained in terms of byn

‘and B, in (8)

The approximating function f(k,) is subtracted from
the original function G ./ jkz, which guarantees the
remaining function to be negligible beyond kymax2

=i / dk, k,H? (k,p) [ zo(kp) _ (k,,)]

1

+ = dk,k, HD (kpp) f(kp). (9
471— Cap2+Cap1

Note that the first integral is evaluated along the path
Coap2 because the integrand is negligible on C,p;, but



656 ~ IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 5, MAY 1996

log.o| 1 G?x dz|

-8.0
[
~-8.5 1
-9.0
Exact
@----8 Apprx. (two-level)
9.5 | e Apprx. (one-level)
% n
-10.0 - - '
-3.0 -2.0 =-1.0 0.0 1.0
10g,0(kop)

Fig. 8. The magnitude of the Green’s function for the vector potential
J G2, dz. First layer-PEC; second layer-er = 12.5,d2 = 0.03 cm; third
layer-e;3 = 2.1, d3 = 0.07 cm; fourth layer-free-space, freq = 30 GHz.

the second integral is evaluated along Cppa + Copi.
Therefore, the Sommerfeld identity (2) can be applied
to. the integrals in (9). '

5) The remaining function is sampled along the path C,po
with 100 samples. Since the maximum range for the
sampling (k,,...,) is rather small, compared to that of
the one-level approximation scheme, the frequency of
sampling can be made quite high without substantially
increasing the number of samples. For all practical
purposes (including the worst case situation) the choice
of 200 as the number of samples would be more than
enough to get a good approximation ’

éA ' N2 N
zZL ~ ntl —agnks,
e~ fk) = D banet =3 agneT (10)
n=1 n=1
: BanTo2 k:
n — . ) n — b n i (11
o Tl 1 7To) ag 2n€ (11)

where b, and Ba,, are the coefficients and exponents of
the exponentials of ¢ obtained from the application of
the GPOF method, and as,, and «s,, are the coefficients
and exponents of the exponentials of %,,. The number
of exponentials N, in this part of the approximation
is chosen to be 8, again by the number of significant
singular values.

To summarize, the approximation parameters as chosen
here are as follows: for the first part of the approximation;
Ty, = 400, Ty = 5, number of samples = 50, and number of
exponentials = 5, for the second part of the approximation;
number of samples = 100, number of exponentials = 8. Note
that the total number of exponentials used in this approxi-
mation is 13. The Green’s function obtained by employing
the above procedure is given in Fig. 8 along with the data
obtained from direct numerical evaluation of the Sommerfeld-

log,o|G|
4.0 .
' Exact (GAxx)
m, © Apprx.(GAxx)
"-x\ ----------------- Exact (Gqx)
\.\\ o Apprx. (Gax)
“u,
2.0 ¢ . M J
.\\
E\\s
0.0 | N, -
%'&J
-2.0 . .
-3.0 -2.0 -1.0 0.0 1.0
logs0(kop)
@
10g:0|G|
5.0
— Exact (GAzz)
4.0 4 O Apprx. (GAzz) |
................ Exact (qu)
O Apprx. (Gqz)
3.0 ™
2.0 |
1.0
0.0 : :
-3.0 -2.0 -1.0 0.0 1.0
logs0(kop)
(b)
Fig. 9. (a) The  magnitude of  the normalized = Green’s
functions anGa, us,4mes GE. First layer-PEC; second

layer-€,2 = 12.5,d2 = 0.03 cm; third layer-e,3 = 2.1,d3 = 0.07 cm;
fourth layer-free-space, freq = 30 GHz. (b) The magnitude' of the
normalized Green’s functions 47rG;“z /1t3,4we3 G, First layer-PEC; second
layer-6r2 = 12.5,d2 = 0.03 cm; third layer-€,3 = 2.1,d3 = 0.07 cm;
fourth layer-free-space, freq = 30 GHz.

type integral (exact), and from the one-level approximation
approach with the parameters of approximation T, = 200,
number of samples = 400 and the number of exponentials
= 13. Note that the values of the parameters used in the
one-level approximation are chosen to make the computation
time minimum with a reasonable agreement. However, those
of the two-level approximation are typical values and the
number of samples for the second part of the approximation
can even be reduced to 50 with no change in the results.
The two approximation techniques for the above example are
compared for the CPU time on a SPARCstation 10/41, using
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Fig. 10. (a) The magnitude of the normalized Green’s function 47GZ, /3.
First layer-PEC; second layer-€,, = 125,d2 = 0.03 cm; third
layer-e,3 = 2.1,d3z = 0.07 cm; fourth layer-free-space. (b) The magnitude
of the normalized Green’s function 4we3GZ. First layer-PEC; second
layer-e,2 = 12.5,d2 = 0.03 cm; third layer-e,.3 = 2.1,d3 = 0.07 cm;
fourth layer-free-space.

the same number of total exponentials (= 13) for different
approximation parameters, and presented in the table format
below:

Approximation CPU time
Approximation Parameters (sec)
one-level To = 200, Ny = 400 198.0
one-level T, = 200, N, = 500 382.0
two-level T51 = 400, N, = 50
Toy = 5,Ng, = 50 1.2
two-level To; = 400, Ng, = 50

Too = 5,N,, = 100 3.5

where N is the number of samples in one-level approximation
scheme while Ng; and N9 are the number of samples of the
first and second parts of the approximation, respectively, in
the two-level approximation approach. It is obvious that the
two-level approximation approach improves the computational
efficiency significantly.

The robustness of the two-level approach can be demon-
strated by casting the other Green’s functions into closed
forms with the use of the same approximation parameters as
those used for [ G4 dx, namely To; = 400,Ns;, = 50
To2 =5, N,, = 100. The normalized Green’s functions of the
vector and scalar potentials due to HED and VED sources
are obtained (47GZ, /us,4me3GL,ATGA Jus and 4mesGY)
following the two-level approach (Apprx.) and evaluating
the Sommerfeld integrals numerically (Exact), and given in
Fig. 9(a) and (b). This test shows that the same set of approx-
imation parameters can be used for any Green’s function, that
is, there is no need for an advance investigation of the Green’s
function and no need for any trial steps. The assessment
of the robustness of the proposed approach also requires a
study of the sensitivity of the approximation parameters to
the geometrical constants and the frequency. Therefore, the
Green’s functions for the vector and the scalar potentials are
obtained in closed forms for the same geometrical constants
and for the same approximation parameters used above, but
the frequency of operation is changed to 1 GHz, 10 GHz and
100 GHz, which is equivalent, in effect, to a change of the
geometrical constants, Fig. 10(a) and (b). It is observed that
the agreements between the exact and approximate sets of
data are still perfect and hence it is safe to conclude that the
two-level approach proposed in this paper is very robust.

IV. CONCLUSION

The closed-form Green’s functions developed previously
suffer from the difficulties of choosing approximation param-
eters for the exponential approximation techniques used in the
derivation, thereby rendering the technique to be inefficient
and not robust. Moreover, the extraction of the SWP’s and
real images may not be possible or efficient for multilayer
geometries when the original approach is used. Here, a new
approach based on a two-level approximation is proposed to
overcome these difficulties and to make the use of closed-form
Green’s functions attractive for those developing EM software
and for researchers in the field. The major advantages of this
approach are its robustness and the computational efficiency,
both of which are demonstrated in the text.
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