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A Robust Approach for the Derivation

of Closed-Form Green’s Functions
M. I. Aksun, Member, IEEE

Abstract— Spatial-domain Green’s functions for multilayer,

planar geometries are cast into closed forms with two-level ap-

proximation of the spectral-domain representation of the Green’s
functions. This approach is very robust and much faster com-

pared to the original one-level approximation. Moreover, it does
not require the investigation of the spectral-domain behavior of
the Green’s functions in advance to decide on the parameters

of the approximation technique, and it can be applied to any

component of the dyadlc Green’s function with the same ease.

I. INTRODUCTION

N UMERICAL modeling of printed structures used in

monolithic millimeter and microwave integrated circuits

(MMIC) can be efficiently and rigorously performed by em-

ploying the method of moments (MoM). The MoM is based

upon the transformation of an operator equation, such as

integral, differential, or integro-differential operators, into a

matrix equation [1]. Although the MoM is the most effi-

cient numerical technique for moderate-size printed geometries

(spanning several wavelengths in two dimensions), there is

still need for improvement, which could be accomplished in

the calculation of the matrix elements and in the solution of

the matrix equation, For small geometries like those requiring

couple hundreds of unknowns, the matrix-fill time could be

the significant part of the overall solution time, however, for

large geometries the matrix solution time will dominate the

CPU time [2].

In the application of the spatial-domain MoM to the solution

of a mixed-potential integral equation (MPIE), one needs

to calculate the Green’s functions of the vector and scalar

potentials in the spatial domain where they are represented as

oscillatory integrals, called Sommerfeld integrals. The eval-

uation of these integrals is quite time consuming, therefore

the matrix-fill time would be significantly improved if these

integrals can be evaluated efficiently. Recently, a technique

has been proposed to approximate these integrals analytically

for a horizontal electric dipole over a thick substrate backed

by a ground plane; this is called the closed-form Green’s

functions method [3]. This technique was improved first for

two layer geometries with arbitrary thicknesses [4], then for

multilayer geometries with horizontal electric dipole (HED),
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horizontal magnetic dipole (HMD), vertical electric dipole

(VED), and vertical magnetic dipole (VMD) sources [5].

However, a question remains to be answered on the robustness

and the efficiency of the technique, because some of the

Green’s functions are usually difficult to approximate and it

is recommended that the function to be approximated needs

to be examined in advance. The source of difficulties in

this technique is the approximation of the spectral-domain

Green’s fimctions in terms of complex exponentials. The

originally proposed technique [3] uses the original Prony

method which requires the same number of samples as the

number of unknowns, that is, the number of samples must

be twice as many as the number of complex exponential

(one for the coefficient and one for the exponent). Therefore,

it would be difficult to account for the fast changes in the

spectral domain without using tens of complex exponential

if not hundreds in certain cases, which is partly due to the

uniform sampling required by the Prony method. The use of

the least-square Prony method has improved the technique

to account for the fast changes with a reasonable number

of exponential [4], but due to the noise sensitivity of the

Prony methods [6], [7], it requires several trial and error

iterations which render the technique to be inefficient and

not robust. As a solution, another approximation technique,

called the generalized pencil of function (GPOF) method [8],

is employed in casting the Green’s functions into closed

forms [5]. The GPOF method has turned out to be quite

robust and less noise sensitive when compared to the original

and least-square Prony’s methods, and also provides a good

measure for choosing the number of exponential used in

the approximation. However, it still requires one to study in

advance the spectral-domain behavior of the Green’s function

in order to decide on the approximation parameters like

the number of sampling points and the maximum value of

the sampling range. In addition, since the approximation

techniques, like the Prony and the GPOF methods, require

the function to be sampled uniformly, one would need to

take hundreds of samples in order to be able to approxi-

mate a slow converging function with rapid changes (even

if this were to occur in a small region), which is a typ-

ical behavior of the spectral-domain Green’s functions of

the scalar potentials in a thin substrate. Because of these

difficulties, the technique of deriving the closed-form Green’s

functions and subsequently using them in MoM applications

are considered to be not robust and could not be used much

for the development of a general-purpose electromagnetic
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software. In this paper, a new approach based on a two-

level approximation is proposed to overcome these difficulties,

and demonstrated that it is very robust and computationally

efficient.

The procedure of the original one-level approximation is

described and difficulties associated with this approach are

demonstrated on some examples by using the GPOF method in

Section II of this paper. This is followed in Section III where

the formulation of the new approach based on a two-level

approximation and some numerical examples are included.

Then, in Section IV, a discussion on the new technique and

conclusions are provided.
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II. DIFFICULTIES IN THE ORIGINAL

ONE-LEVEL APPROXIMATION

Since the main goal of this paper is to introduce a robust

technique to obtain the spatial-domain Green’s functions in

closed forms for planarly-layered media, Fig. 1, it would be

useful to give the definition of the spatial-domain Green’s

functions

(1)

where, G and G are the Green’s functions in the spatial and

‘2) is the Hankel function ofspectial domains, respectively, HO
the second kind and SIP is the Sommerfeld integration path

defined in Fig. 2. Note that this integral, called the Sommerfeld

integral, can not be evaluated analytically for the spectral-

domain Green’s functions G, which are obtained analytically

for planarly stratified media [5], [9]. It was recognized by

Chow et al, [3] that if the spectral-domain Green’s function

G is approximated by exponential, the Sommerfeld inte-

gral (1) can be evaluated analytically using the well-known

Sommerfeld identity

~–lkr
__=_i

/

~–~~.lz

2 SIP

dkpkpH~2)(kpp)~ (2)
T .

Therefore, this places the emphasis of deriving the closed-

form Green’s functions on the exponential approximation.

Since the approximation techniques used for this problem,

namely the original Prony, the least square Prony and the

GPOF methods, require uniform samples along a real variable
of a complex-valued function, one might think of choosing

the integration path in (1) along the real kP axis so that G can

be sampled along a real variable. However, one should notice

that k; = k2 – k~ and sampling along real kP results in an

approximation in terms of exponential of kP which cannot

be cast into a form of exponential of kZ as required in the

application of the Sommerfeld identity (2). Hence, a deformed

path on kP plane. denoted by CaP in Fig. 2, was defined as a
mapping of a real variable t onto the complex k, plane by

‘= ’[-’’+ (’-31>
O~t~TO (3)

region-(i-m)

2=-2 .“ -n

Fig, 1, A typical planar geometry,

where kZ and k are defined in the source layer [3]. The Green’s

functions are sampled uniformly on t E [0, TO], which maps

k[l + T~]1i2 in the kP-plane,onto the path C.P with kp~a, = -

and approximated in terms of exponential of t which can

easily be transformed into a form of exponential of kZ. This

scheme is called the one-level approximation approach here in

this paper because the complex function to be approximated is

sampled between zero and TO and is assumed to be negligible

beyond T..
For a general-purpose algorithm, the spectral-domain

Green’s functions are obtained for a multilayer medium and

neither surface-wave poles nor the real images are extracted.

It is true that the extraction of the surface-wave poles (SWP)

and the real images would have helped the exponential

approximation techniques by making the Green’s functions in

the spectral domain well-behaving (extinction of the SWP’S)

and fast-converging (extraction of the real images). However,

since the contribution of the SWP’s is small for geometries

on a thin substrate, and there is no analytical way of finding

the real images for multilayer planar structures except for

simple cases like single and double layers. the help gained

for the approximation would be limited to a restricted class of

planar geometrim and would render the algorithm not general

purpose and not robust.

It would be instructive to consider the practical details of

the implementation of the exponential approximation along

the path defined in (3). It is of utmost importance to choose
the approximation parameters; T., the number of exponen-

tial to be used in the approximation, and the number of

samples in t G [0, TO], judiciously for the success of this

approach. To illustrate the implementation of the one-level

exponential approximation and the difficulties involved, the

spectral-domain Green’s function for the scalar potential due

to an x-directed dipole, G:, is given in Fig. 3, for a geometry

of four layers at 30 GHz: First layer-PEC; second layer-

~T2 = 12.5,d2 = 0.03 cm; third layer-cr3 = 2.1,d3 = 0.07 cm;

fourth layer-free-space, and the source and observation planes

are chosen at the interface of the second and third layers. Since

the expressions of the spectral-domain Green’s functions in a
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Fig. 2. Definition of the Sommerfeld integration path and the path CaP used in one-level approximation.
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Fig. 3. The magnitude of the spectrat-domain Green’s fnnction G% atong
the path C’aP. First layer-PEC; second layer-c,z = 12.5, da = 0.03 Cm third
layer-er3 = 2.1, d3 = 0.07 cm fourth layer-free-space, freq = 30 GHz.

multilayer medium are given in [5] for HED, VED, HMD,

and VMD sources, they are not included in this paper. It is

evident from Fig, 3 that Green’s functions can have sharp

peaks and fast changes for small t, which maps to the far-

field region in the spatial domain. Therefore,, one needs to

sample the Green’s function given in Fig. 3 at a period of

less than 0.05 along t so that the fine features of the function

can be captured in the approximation. The choice of TO is
another parameter that competes with the period of samples

because large TO corresponds to large number of samples

and translates to a longer CPU time. Fortunately, for the

example given in Fig. 3, the Green’s function decays quite

fast in the spectral domain, therefore it would be enough to

sample as far as TO = 5 which requires 200 samples if At
is chosen to be 0.025. The spatial-domain Green’s function is

obtained via the GPOF method using the above approximation

parameters (To = 5, number of samples = 201, number of

exponential = 13) and compared to the result obtained from

the numerical integration, which are labeled as “Apprx.” and

“Exact~’ respectively, in Fig. 4. Although, as it was mentioned

above, the SWP’s are not extracted from the spectral-domain

Green’s function prior to the exponential approximation, the

contribution of the SWP’s is also shown for the purpose of

comparison and one can draw a conclusion that the exponential

approximation algorithm (GPOF) works fine well within the

influence range of the SWP’s and beyond that an asymptotic

h — Approx.
_ Exact

14.0 –––– SW contribution

I \
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Fk. 4. The mamitude of the Green’s function for the

b

,0

scalar P-
te&ial and the ‘surface wave contribution. Fwst layer-PEC; second
layer-erz = 12.5, dz = 0.03 cm third layer-e,s = 2.1, dt = 0.07 cm
fourth layer-free-space, freq = 30 GHz.

approximation together with the surface-wave contribution can

be used to approximate the spatial-domain Green’s functions

[10], [11].

Unfortunately, not all the Green’s functions have fast de-

caying spectral-domain behavior like the above example given

in Fig. 3, For example, the spectral-domain Green’s function

for the vertical component of the vector potential due to

a HED [5], G& /jkc = G$v/jkV, does not decay as fast

and moreover has a relatively sharp peak which requires

sampling almost as frequently as that of the example given

in Fig. 3, as shown in Fig. 5. To demonstrate the effect of the
A dx (=approximation parameters, the Green’s function ./ G..

3-1 {G$Z /jkZ }) is given for the same approximation pa-

rameters as those of the above example (TO = 5, number

of samples = 201) and compared to the results obtained by

the numerical integration of the spectral-domain representation

of the Green’s function and to the results obtained by using
different approximation parameters in Fig. 6. It is observed

that the approximated Green’s functions do not agree with

the exact solution for small values of p because the spectral-

domain Green’s function is not sampled far enough to get

an accurate near-field distribution. However, if the value of

To is increased, the agreement between the approximated and
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Fig. 5. The magnitude of the spectral-domain Green’s fnnction G~Z /jk~.

First layer-PEC; second layer-c,z = 12.5, dz = 0.03 cm third
layer-e,s = 2.1, ds = 0.07 cm fourth layer-free-space, freq = 30 GHz.

exact Green’s functions is improved at the expense of the

computation time provided that the frequency of sampling is

kept constant.

From the above discussion, it can easily be concluded that

the one-level approximation approach can not be made fully

robust and suitable for the development of CAD software.

As it was mentioned above, this is because it requires users

first to investigate the spectral-domain behavior of the Green’s

function and then to perform a few iterations to find the

best possible combination of the approximation parameters.

To circumvent these difficulties, a two-level approximation

scheme is developed here in conjunction with the use of the

GPOF method and its details are given in the following section.

III. TWO-LEVEL APPROACH FOR APPROXIMATING

THE SPECTRAL-DOMAIN GREEN’s FUNCTIONS

To alleviate the necessity of investigating the spectral-

domain Green’s functions in advance and the difficulties

caused by the trade-off between the sampling range T. and the

sampling period, the approximation is performed in two levels.

The first part of the approximation is performed along the path

C.Pl while the second part is done along the path IC.P2, as

shown in Fig. 7. Note that the second part of the approximation

is the same as the one-level approximation scheme described

in the previous section, except that now the value of TOZ

(kPm.., = k[l + T~2]lt2) can be set in advance to a value
such that kPm=xt 2 km where km is the maximum value of

the wavenumber involved in the geometry.

To illustrate the procedure of the two-level approximation,
we will first outline the necessary steps and then provide some

of the details. The steps are:

1) Choose TOz such that kPmax, > km : For exam-

ple, since GaAs is the highest dielectic constant layer

(cr(GaAs) = 12.5), then km = ~k~, and T02 can

be safely chosen to be five.

109101sG:. dxl

‘8-0 r I
>G

-9.0

— Exact

-9.5 ---- Apprx.( TO=5, #of sample=201 )
r+--= AppIrx.(TOd O, # of sample=401 )
x--+ Apprx.(TO=50, # of sample=601 )

Q
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-3.0 -2.0 -1.0 0.0 1.,0

log,o(kop)

Fig. 6. The magnitude of the Green’s function for the vector potential

S G#= dz. First layer-PEC; second layer-er~ = 12.5, dz = 0.03 cm third
layer-ers = 2.1, ds = 0.07 cm, fourth layer-free-space, freq = 30 GHz

2)

3)

4)

5)

Choose Tol, i.e., kpmaxl = k[l + (Tel + 2%2)2]1/2, and

the number of samples on [kPmaxz,kPm.Xl]: The choice

of Tol is not very critical as long as one chooses kP,naXl

large enough to pick up the behavior of the spectral-

domain Green’s function for large kP, and, since the

spectral-domain behaviors of the Green’s functions are

always smooth beyond kP~aX,, it is not necessary to have

a large number of samples on [lcPmax,,kPmaxl]. TWlical

values could be 200 for Tol and 200 for the number of

samples.

Sample the function along the path Capl and approxi-

mate it by using the GPOF method: Sampling along the

path C~Pl can be performed by varying t between zero
and Tol uniformly in k. = –jk[TOz + t].

Subtract the function approximated for the range of

~P ~ [~Pmax27 ~P,=axl ] from the original function: The

remaining functicm will be nonzero over a small range

of kp (G [0, kpmaxz] ) so that one can pick up the
fine features of this function without employing a huge

number of sampling points.

Sample the remaining function uniformly along the path

CaPz and approximate it by using the GPOF method:

Sampling along the path CaPz can be performed by

varying t between zero and TOz uniformly in k,, =

k[–jt + (1 – t/T,,2)].

l’he parameters that must be fixed by the user in advance

are the limits of the sampling ranges To 1 and TOz for the first

and the second parts of the approximation, respectively, and

the number of samples along the paths Capl and C.Pz, which

respectively correspond to the first and second parts of the

approximation. Although the number of parameters which are
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Fig. 7. The paths CmPl and CaPz used in two-level approximation.

to be decided by the user seems to have increased compared to

the one-level approximation, these parameters are determined

only once for the class of geometries that are of interesq they

are used for the approximation of any component of the dyadic

Green’s function and for any geometrical constants. Moreover,

the choice of these parameters do not require an investigation

of the function to be approximated in advance because they can

be chosen for the possible limits of the geometrical constants.

To demonstrate the robustness of the technique, the choice

of the parameters and the application of the above procedure,

the Green’s function J G$., dx is obtained for the same ge-

ometry given in Section II. Its” spectral-domain representation

is given here as

G:z
[

–pi L.
— ~(A(kzO, -. ,kzN)+l?(kzo, ”””

= 2jkzt ~
, kZ~ ))e~~z,Z

jkx

+ *( C(kzo,.o., &N) + ~(ko,... , kJ)e-~kz”
P 1

(4)

to help explain the approximation procedure, where the layer

“i” denotes the source layer, and A, B, C’, and D are given

in [5]. It should also be noted that this expression is for

the case where the source and observation points are in the

same layer, i.e., layer “i.” If it is desired to find the Green’s

function for the observation layer different from the source

layer, then the coefficients of the up-going waves and down-

going waves must be carried to the observation layer with a

recursive algorithm [5], [9]. Let us first give the parametric

equations describing the paths C.Pl and C’.P2 for the first and

second parts of the approximation, respectively

For C.Pl k,, = –jki [T02 + t] O<t<TO1 (5)

‘or cap’‘Z=kib+(’-+)l
O<t<T.2

(6)

where t is the running variable sampled uniformly on the

corresponding range. Then, the above procedure is followed

step-by-step as:

1) T02 = 5 is chosen, for which kPmax, = k~[l +

Tj2]1/2 > km = ~ k..

2) TO1 = 400 is chosen to ensure that the behavior of

G&/jkZ for large kP is captured. This choice is not

b

3)

4)

km‘Pmax2 ‘Pmaxl

655

critical, 300 or 500 could have been chosen instead.

Since there is no fine feature to pick up in this range,

that is, the function is smooth, one can keep the range

large without having to use a large number of samples.

Therefore, the number of samples is chosen to be 50.

G&Z/jkz is sampled along the path C.Pl and the GPOF

method is applied

Al
aln = ~; aln = blne —j~,rx1nTo2

‘j ki
(8)

where bln and /31n are coefficients and exponents ob-

tained from the GPOF method, and lV1 is the number

of exponential used in this approximation. The choice

of the number of exponential is based upon the number

of significant singular values obtained in an intermedi-

ate step of the application of the GPOF method. For

this specific problem, five exponential are chosen to

approximate the Green’s function on the range of kP c

[k,max,, k,max, ]. The transformation of the coefficients

bln and the exponents ,61. is necessary to cast the

approximating function into a form suitable for the

application of the Sommerfeld identity (2), that is, the

approximating function must be an exponential function

of k={. Hence, al~ and aln are obtained in terms of bln

and @l~ in (8)
The approximating function j(kfl ) is subtracted from

the original function G$Z /jkz, which guarantees the

remaining function to be negligible beyond kPmW2

G=~
/

dkPkPHj2J(kPp)

[

W (~P)

4X C.F,
- f(~,)

jkz 1+1J4KCQ2+C7.,1

dkJ@$)(kPp)f(k~). (9)

Note that the first integral is evaluated along the path

CaP2 because the integrand is negligible on Capl, but
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Fig. 8. The magnitude of the Green’s function for the vector potential

~ G~Z dx. First layer-PEC; second layer-w = 12.5, dz = 0.03 cm third
layer-e,s = 2.1, ds = 0.07 cm, fourth layer-free-space, freq = 30 GHz.

the second integral is evaluated along C~P2 + Capl.

Therefore, the Sommerfeld identity (2) can be applied

to the integrals in (9).

5) The remaining function is sampled along the path Capz

with 100 samples. Since the maximum range for the

sampling (kP~aXz) is rather small, compared to that of

the one-level approximation scheme, the frequency of

sampling can be made quite high without substantially

increasing the number of samples. For all practical

purposes (including the worst case situation) the choice

of 200 as the number of samples would be more than

enough to get a good approximation

p2nT02

a2n = ki(l +jTo2);
a2n = bz~e “a’n (11)

where bzn and /3zn are the coefficients and exponents of

the exponential of t obtained from the application of

the GPOF method, and azn and c12. are the coefficients

and exponents of the exponential of k=,. The number

of exponential 112 in this part of the approximation

is chosen to be 8, again by the number of significant

singular values,

To summarize, the approximation parameters as chosen

here are as follows: for the first part of the approximation;

‘TO1= 400, TOZ = 5, number of samples = 50, and number of
exponential = 5, for the second part of the approximation;

number of samples = 100, number of exponential = 8. Note

that the total number of exponential used in this approxi-

mation is 13. The Green’s function obtained by employing

the above procedure is given in Fig. 8 along with the data

obtained from direct numerical evaluation of the Sommerfeld-

4.0

2.0

0.0

\

— Exact (GAXX)

o Apprx.(GAxx)
. .... . Exact (Gqx)

“...,,
,\\,

\:

❑ Apprx. (Gqx)

‘m
‘“\

‘...
‘-..

. .. ..

‘?

‘@ ~~~ ~

%3

-2.01---L
-3.0 -2!.0 -1.0 0.0 1.0

loglo(kop)

(a)

L —Exact (G.4zz)

4.0 0 Apprx. (GAzz)

. Exact (Gqz)

o Apprx. (Gqz) I

3.0

l\ ~

... \

“...
“\.,

13..>
2.0

“\

\

1.0 ‘k.,
=“’~ ,,...

0-0 ~~

-3.0 -2.0 -1.0 0.0 1.0

loglo(kop)

(b)

Fig. 9. (a) The magnitude of the normalized Green’s
functions 4rTG~Z/p3 , 4m3Gi . First layer-PEC; second
layer-e,z = 12.5,dz = 0.03 cm third layer-e,s = 2.1, ds = 0.07 cm,

fourth layer-free-space, freq = 30 GHz. (b) The magnitude of the
normalized Green’s functions 4rrG#Z / p 3, 4T63 G:. First layer-PEC; second

layer-erz = 12.5, dz = 0.03 cm, thud layer-~rs = 2.1, ds = 0.07 cm
fourth layer-free-space, freq = 30 GHz.

type integral (exact), and from the one-level approximation

approach with the parameters of approximation Z’o = 200,

number of samples = 400 and the number of exponential

= 13. Note that the values of the parameters used in the

one-level approximation are chosen to make the computation

time minimum with a reasonable agreement. However, those

of the two-level approximation are typical values and the

number of samples for the second part of the approximation

can even be reduced to 50 with no change in the results.

The two approximation techniques for the above example are

compared for the CPU time on a SPARCstation 10/41, using
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Fig, 10. (a)The magnitudeof the normalizedGreen’sfunction 47rG~Z/#a.
First layer-PEC; second layer-.s,z = 12.5,dz = 0.03 cm, third
layer-e,i = 2.1, ds = 0.07 cm fourth layer-free-space. (b) The magnitnde
of the normalized Green’s function 4me3 G~. First layer-PEC; second

layer-q-z = 12.5, dz = 0.03 cm tikd layer-q+ = 2.1,ds = 0.07 cm
fourth layer-free-space.

the same number of total exponential (= 13) for different

approximation parameters, and presented in the table format

below:

Approximation CPU time

Approximation Parameters (see)

one-level TO = 200, N, = 400 198.0

one-level T. = 200, Ns = 500 382.0
two-level Tol = 400, Ns, = 50

T.z = 5, N.= = 50 1.2
two-level TO1 = 400, N, I = 50

T02 = 5, N., = 100 3.5

where Ns is the number of samples in one-level approximation

scheme while N, 1 and N$2 are the number of samples of the

first and second parts of the approximation, respectively, in

the two-level approximation approach. It is obvious that the

two-level approximation approach improves the computational

efficiency significantly.

The robustness of the two-level approach can be demon-

strated by casting the other Green’s functions into closed

forms with the use of the same approximation parameters as

those used for f G& d%, namely T,, I = 400, Nsl = 50

Toz = 5, N., = 100. The normalized Green’s functions of the

vector and scalar potentials due to HED and VED sources

are obtained (4mG#Z/p3, 47re3G$, 47rG$Z/p3 and 4rc3G’j)

following the two-level approach (Apprx.) and evaluating

the Sommerfeld integrals numerically (Exact), and given in

Fig. 9(a) and (b). This test shows that the same set of approx-

imation parameters can be used for any Green’s function, that

is, there is no need for an advance investigation of the Green’s

function and no need for any trial steps. The assessment

of the robustness of the proposed approach also requires a

study of the sensitivity of the approximation parameters to

the geometrical constants and the frequency. Therefore, the

Green’s functions for the vector and the scalar potentials are

obtained in closed forms for the same geometrical constants

and for the same approximation parameters used above, but

the frequency of operation is changed to 1 GHz, 10 GHz and

100 GHz, which is equivalent, in effect, to a change of the

geometrical constants, Fig. 10(a) and (b). It is observed that

the agreements between the exact and approximate sets of

data are still perfect and hence it is safe to conclude that the

two-level approach proposed in this paper is very robust.

IV. CONCLUSION

The closed-form Green’s functions developed previously

suffer from the difficulties of choosing approximation param-

eters for the exponential approximation techniques used in the

derivation, thereby rendering the technique to be inefficient

and not robust. Moreover, the extraction of the SWP’s and

real images may not be possible or efficient for multilayer

geometries when the original approach is used. Here, a new

approach based on a two-level approximation is proposed to

overcome these difficulties and to make the use of closed-form

Green’s functions attractive for those developing EM software

and for researchers in the field. The major advantages of this

approach are its robustness and the computational efficiency,

both of which are demonstrated in the text.
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